
Decoding-Workload-Aware Video Encoding

Yicheng Huang, Guangming Hong, Vu An Tran and Ye Wang
Department of Computer Science
National University of Singapore

Law Link, Singapore 117590
Republic of Singapore

{huangyic, honggm, wangye}@comp.nus.edu.sg; tranvuan82@gmail.com

ABSTRACT
This paper presents a novel decoding-workload-aware video
encoding scheme. It takes raw video data and decoding workload
constraint of a mobile client as input and generates a video
bitstream which matches such a constraint while striving to
achieve the best video quality. For a given constraint, the best
overall video quality of the encoded bitstream is selected with a
tradeoff between spatial and temporal distortions. The main
contributions of this paper include: 1) the proposal of an efficient
scheme which selects the most suitable target frame rate before the
actual encoding; 2) The design of a workload control (analogous to
the rate control) scheme which ensures an accurate control of the
decoding workload when the bitstream is generated using the
proposed encoding scheme. Experimental results demonstrate the
feasibility and performance of the proposed scheme.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications

H.5.1 [Multimedia Information Systems]: Video

General Terms
Algorithms, Design, Experimentation

Keywords
Video Encoding, Workload Control, Frame Rate Selection

1. INTRODUCTION
The recent developments in communication and microprocessor
technologies have made mobile devices becoming attractive
entertainment platforms for multimedia especially video
applications. However, supporting video applications on mobile
devices is challenging due to limited processing power on the low
to middle-end mobile devices with processor frequency of 200-400
MHz. Even with the fastest mobile processor in the market today
with processor frequency of around 600 MHz, it is still difficult to

satisfy the decoding workload requirement of high quality video
with a high frame rate.

To address this problem, we propose a decoding-workload-aware
video encoding scheme to generate a video bitstream which
matches the workload constraint of the target mobile devices.

The analysis in our previous work on decoding workload model [1]
shows the relationship between parameters in the video bitstream
and decoding workload. Given the parameters such as the number
of Huffman codes, Macroblock (MB) type and motion vectors’
precision, the decoding workload can be estimated accurately
using the proposed decoding workload model. This inspires us to
design a decoding-workload-aware video encoding scheme, which
controls the decoding workload from the encoder side by adjusting
these parameters during the encoding process. The concept of
workload control is analogous to the rate control which controls
the target bitrate to satisfy the bandwidth/storage constraint. The
proposed workload control scheme is implemented with an
MPEG-2 video codec for the proof of concept.

For video encoding, the frame rate plays a significant role on the
decoding workload. Intuitively, a video bitstream with the same
image quality but a lower frame rate has a lower decoding
workload. For a conventional video encoder, the target frame rate
is typically fixed at 25 or 30 fps. However, mobile devices with
low processing power might not be able to decode a video
bitstream with such a high frame rate in real time. To reduce the
decoding workload, we can either reduce the frame rate or reduce
the quality of the individual frame. The problem is, given a
decoding workload constraint, there can be more than one
candidate with different combinations of frame rate and individual
frame quality. The challenge is how to choose a candidate with the
best overall quality. Conventional objective video quality measures
such as MSE and PSNR cannot compare quality between video
clips with different frame rates. A possible solution proposed in [2,
3] is to replace the dropped frame by its previous frame in display
order and calculate average PSNR or MSE of the new video
sequence as the video quality. The rationale behind such approach
is that a video player typically maintains the current frame on the
screen before displaying the next frame. With this method, both
spatial distortion (image quality) and temporal distortion (frame
rate) are considered. This approach, however, is problematic for
our proposed encoding scheme, because it requires encoding,
decoding and calculating PSNR/MSE for every candidate of all
possible frame rates. This could become prohibitively expensive
computationally. To solve this problem, we propose a new frame
rate selection scheme which provides a fast estimation of the
resulted distortion for every candidate before the actual encoding.
This is followed by a workload control scheme which accurately

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NOSSDAV’08, May 28–30, 2008, Braunschweig, Germany.
Copyright 2008 ACM 978-1-60558-157-6/05/2008…$5.00.

45

Copyright 2008 ACM 978-1-60558-157-6/05/2008 ...$5.00.

determines the decoding workload of the generated video bitstream
when being decoded on the targeted clients. The architecture of the
proposed decoding-workload-aware encoder is shown in Figure 1.

Frame Rate
Selection
Scheme

Encoding with
Workload
Control

Client Decoding
Workload Constraint

Encoded
Video

Bitstream

Raw Video Data
Target
Frame
Rate

Figure 1: The encoder architecture

The encoding procedure includes two phases. In the first phase, the
raw video data and client decoding workload constraint together
with all possible frame rates are fed into the Frame Rate Selection
Scheme which selects the most suitable frame rate for the actual
encoding. In the second phase, the encoder uses the selected frame
rate and client decoding workload constraint to compress the raw
video into the target video bitstream using the Workload Control
Scheme.

The rest of the paper is organized as follows: Section 2 introduces
the workload control scheme. Section 3 presents the frame rate
selection scheme. Section 4 includes evaluations of the proposed
schemes and Section 5 concludes this paper.

2. WORKLOAD CONTROL SCHEME
According to the decoding workload model proposed in [1]: an
MPEG video is made up of a sequence of Macroblocks (MBs), and
modeling the video decoding workload is decomposed to modeling
three major tasks of decoding one MB: Variable Length Decoding
(VLD), Inversed Discrete Cosine Transform (IDCT) and Motion
Compensation (MC). The decoding workload of VLD is modeled
as a linear function of the number of Huffman codes. The decoding
workload of IDCT is modeled as a lookup table indexed by the last
position of Huffman codes. The workload of MC is modeled as a
lookup table indexed by motion vectors’ precisions. And for
different types of MB, the parameters of the models can be
different. Thus, we can control the decoding workload by adjusting
the number of Huffman codes, MB type and motion vector
precision.

The workload control can work at three levels: frame level, MB
level or task level. For an encoder, workload control in frame and
MB level is similar to the conventional bit rate control. However,
in task level, rate control and workload control are significantly
different. Rate control scheme only considers the quantization
level of DCT coefficients, which is proportional to the bit rate.
Workload control needs to consider multiple factors and their
tradeoff. For example, if we allocate more workload to the VLD or
IDCT task, we can have more Huffman codes. This increases the
video quality. However, allocating more workload to the VLD or
IDCT task will result in allocating less workload to the MC task.
This may limit the motion vectors’ precision and thus decreasing
the video quality. This problem becomes even harder if we also
consider the MB type. In this section, as the first step of our
research on the decoding-workload-aware encoder, we do not
consider the task level workload control: we simply fix the
workload of the MC task by fixing the MB type and motion

vectors from the conventional motion estimation procedure. We
only control the decoding workload of IDCT and VLD tasks by
adjusting the number of Huffman codes.

We design two strategies for the frame level and MB level
workload control, respectively. The strategies allocate the
workload so that the encoded bitstream can have a better video
quality within the constraint of decoding workload. The two
strategies can be summarized as follows:
! In frame level, the workload is allocated based on statistical

ratio of different frame types and the ratio is adjusted
according to the recent history.

! In MB level, the workload is allocated based on the image
complexity which can be estimated by the variance or MSE.

The experiment results in Section 4 show that these two strategies
can improve the video quality. Algorithm 1 describes how the
workload control scheme works.

Algorithm 1: Workload Control Scheme

The details are as follows:
In line 3, the decoding workload for current frame (Wi, Wp and Wb
for I-frame, P-frame and B-frame) is allocated as:

/(1)p p b b
i

i P i b

N X N XW W
X K X K

! " "
 (1)

/()b p b
p p

p b

N K X
W W N

X K
! "

 (2)

()p b p
b b

b p

N K X
W W N

X K
! "

 (3)
where Xi, Xp and Xb are the decoding workload for the previous I-,
P- and B-frames; Kp and Kb are the parameters representing the

1) Allocate the workload for the current GOP according to
the constraint, GOP size and frame rate on an average basis.
2) For all the frames in the GOP:
3) Allocate the workload to the current frame according to
the frame type and history record.
4) Run motion estimation for all the MBs of the current
frame, decide their MB types, record their MSEs (or VAR
for I-MB) and motion vectors.
5) Estimate the workload of MC for all the MBs based on
the results from 4) using the workload model.
6) For all the MBs in the current frame:
7) Allocate the workload of current MB by its MSE/VAR
and MB type.
8) From the motion vectors get in the line 4, estimate the
workload of VLD+IDCT for all possible number of
quantization scales using workload model. Select out the
number of quantization scale having the workload closest to
WVLD_IDCT =Wmb-WMC, where Wmb is the workload allocated
for the MB, and WMC is the workload of MC get in line 5.
9) Encode the MB.
10) Update the status.

46

ratio between I-, P- and B-frame. In our implementation, Kp=1.0
and Kb=2.0, which are obtained empirically. W is the remaining
workload of the GOP, which is updated after encoding a frame. Np,
Nb are the number of P-and B-frames in a GOP. At the beginning,
Xi, Xp and Xb are initialized as

#
#
$

%
&
&
'

(
""!

b

b

p

p
i K

N
K
N

WX 1

##
$

%
&&
'

(
"!

b

pb
pp K

KN
NWX

#
#
$

%
&
&
'

(
"!

p

bp
bb K

KN
NWX

In line 4, we use conventional motion estimation, with which the
MB type is decided by comparing the MSE or VAR of the MB
with a constant threshold.
In line 7, workload of the current MB, Wmb(i) is allocated as

() (()) * () / () ()
N N

mb frame MC MC
j i j i

W i W W j MSE i MSE j W i
! !

!) "* *
 (4)

where Wframe is the remaining workload of the current frame;
MSE(i) is the MSE of the ith MB (or VAR(i), if the ith MB is an
I-MB); N is the number of MBs of the frame. WMC(i) is the
workload of MC of the ith MB. The rationales behind this equation
are: 1) as mentioned earlier, we do not change motion vectors’
precision or MB type after motion estimation, the workload of MC
can be regarded as fixed; 2) we allocate more workload to VLD
and IDCT tasks of the MB which has larger MSE/VAR. A MB
with larger MSE/VAR implies more residual error. Therefore, it
requires more Huffman codes for the encoding. And to decode a
MB with more Huffman codes, more decoding workload is
required in VLD and IDCT tasks.
In line 9, we use the quantization scale obtained from line 8 for the
actual encoding (generating the bitstream). If the encoder also
employs a rate control scheme, we will get another quantization
scale for the rate control. In this case, both the decoding workload
constraint and bit rate constraint can be satisfied by selecting the
larger quantization scale.
In line 10, we estimate the decoding workload using the
parameters extracted from the encoded MB and update status of
the scheme.

To summarize, in the frame level, we allocate the workload based
on statistical ratio between different components which is updated
with a moving average of recent history; in the MB level, we
allocate the workload based on the image complexity. The
experiment results in Section 4 show that these two strategies
improve the video quality considerably.

3. FRAME RATE SELECTION SCHEME
This section presents our fast frame rate selection scheme: it
enumerates all the frame rate candidates; for each candidate, the
distortion of the target video bitstream is estimated. The candidate
with the smallest distortion is selected. The problem is how to
perform a fast distortion estimation of all target video bitstreams
with all possible frame rates before actual encoding.

Before going to the detail of the algorithm, we introduce some
notations first. Assume we have a raw video sequence containing
N frames: P(0), P(1), P(2)…P(N-1) (see Figure 2). For each
frame rate candidate f, we evenly select M=N*f/fmax frames from
the original sequence for actual encoding, where fmax is the
maximum frame rate. In our implementation, fmax is set as 25fps.
We denote P’(0),P’(1),P’(2),…,P’(M-1) are the frames decoded at
the client end. In Figure 2, f is equal to 12 fps. Replacing a
dropped frame by its previous frame, we get the frame sequence
P’(0,0),P’(0,1)..P’(0,fmax/f-1),P’(1,0),P’(1,1)…P’(1,fmax/f-1)…P’(
M-1,0),P’(M-1,1)…P’(M-1, fmax/f-1), where P’(i,j) is exactly the
same as P’(i,0). And P’(i,j) is corresponding to the frame
P(i*fmax/f+j) in the original video sequence.

After
replacement

P’(0,0) P’(0,1) P’(M-1,0)P’(1,0) P’(1,1) P’(2,0) P’(M-1,1)

P’(0) P’(M-1) P’(1) P’(2)

P(0) P(1) P(N-2) P(2) P(3) P(4) P(N-1) Original

f=12 fps

…

…

…

Figure 2: An example for illustrating frame rate selection scheme

The distortion of the video sequence with frame rate f is calculated
by the distortion of the video sequence after frame replacement,
which is then calculated by the average distortion of the
corresponding frames. Here are the basic ideas to calculate the
distortion between two corresponding frames:

For the frames P’(i,0)
According to the frame rate and GOP structure, we know the frame
type of P’(i,0). Using a simple version of workload control scheme
in Section 2, we can also estimate the number of Huffman codes in
this frame.

If P’(i,0)is an I-frame,
The variance of the frame describes its image complexity. The
distortion between P’(i,0) and P(i* fmax/f) is estimated as the image
complexity lost when being encoded into the target bitstream due
to workload constraint, i.e., a MB will be coded using just a part of
the total 64 Huffman codes:

max

()
(,0) (* /)*(1)

(64)
huff

huff

w N
D i Var i f f

w
!) (5)

where N is the number of Huffman codes, Whuff(N) is the weight of
the first N Huffman codes, Var(i) is the variance of the original
frame, which can be calculated before the actual encoding.

If P’(i,0) is a P-frame,
A P-frame is dependent on its reference frame. Assuming the
reference frame is P’(k), its distortions have two parts: the
distortion propagated from its reference frame and the residual
error lost due to the workload constraint:

()
(, 0) * (, 0) Res'(,) * (1)

(64)
huff

prop
huff

w N
D i W D k k i

w
! ") (6)

47

where Wprop is the weight representing the error propagation effect,
D(k, 0) is the distortion of P’(k) which can be calculated by Eq. 5
(if P’(k) is an I-frame) or Eq.6 (if P’(k) is a P-frame). Res’(k,i) is
the residual error between P’(k) and P’(i). The residual error is
calculated in the motion compensation procedure. Since running
the motion compensation for all frame rate candidates is
computationally expensive, we estimate Res’(k,i) by

Re '(,) Re (,) Re (, 1) *(Re (1,)) ress k i s p q s p p W s p q! ! " " " (7)

where p=k* fmax/f, q=i* fmax/f, Wres is a parameter. Thus, we can
estimate the residual error between any two frames by a linear
combination of the residual error between two adjacent original
frames, which needs to be calculated only once before the actual
encoding.

If P’(i,0) is a B-frame
It depends on two frames P’(k) and P’(t). Similar to the P-frame,
its distortion can be calculated as:

()(,0) (,0) Re '(,) Re '(,)(,0) * *(1)
2 2 (64)

huff
prop

huff

w ND k D t s k i s i tD i W
w

" "
! ") (8)

For the frames P’(i,j), where j>0

MSE

D(i,0)
(1-W)*D(i,0)+W*MSE

P’(i,j) P’(i,0)

P(i* fmax/f+j) P(i* fmax/f)

Figure 3:The distortion calculation for P’(i,j)

The distortion between P’(i,j) and its corresponding frame P(i*
fmax/f+j) equals to the distortion between P’(i,0) and P(i*fmax/f+j),
since P’(i,j) is a direct copy of P’(i,0). Using the frame P(i*fmax/f)
as a bridge (see Figure 3), the distortion can be estimated as a
weighted sum of the spatial distortion between P’(i,0) and P(i* fmax
/f), and the temporal distortion between P(i* fmax/f+j) and P(i* fmax
/f).

temp temp max maxD(i,j) = (1-W)*D(i,0)+W *MSE(i*f /f, i*f /f+j) (9)

where Wtemp is the weight of the temporal distortion and
MSE(i*fmax/f, i*fmax/f+j) is the MSE between P’(i*fmax/f) and
P(i*fmax/f+j), which is used to represent the temporal distortion
caused by the frame replacement in the display sequence. Again,
we do not want to calculate MSE for all the possible candidates.
Let p=i*fmax/f and q=i*fmax/f+j, we estimate MSE(p,q) by

(,) (, 1) * (1,)mseMSE p q MSE p p W MSE p q! " " " (10)

Thus, we estimate the MSE between any two frames by a linear
combination of the MSE between two adjacent original frames,
which needs to be calculated only once before the actual encoding.

The detail of the distortion estimation for each frame rate candidate
is shown as Algorithm 2.

Algorithm 2: Frame Rate Selection Scheme

The details are as follows:
In Line 3, frames with different type are allocated using different
ratio. We keep the ratio the same as that in Algorithm 1: 2:2:1 for
I-, P- and B-frame.
In Line 4, we assume all MBs in I-frame are I-MBs and 1/3 MBs
in P-frame are I-MBs and another 2/3 MBs are P-MBs. We also
assume 1/2 MBs in B-frame are P-MB and another 1/2 MBs are
B-MBs. Based on this ratio, we estimate the sum of the workload
of MC of the MBs in the current frame. It should be noted that
above approach is not the most accurate one. A more accurate
approach can employ the residual error to estimate the number of
I-, P- and B-MBs of the frame. However, our simple scheme is
designed to select the best frame rate. Experimental results show
that this simple approach works sufficiently well. For I-, P- and
B-MB, we use a constant value to estimate the MC workload. The
constant value is obtained from statistical analysis. Again, this is
not the most accurate approach, but is sufficient for our purpose.
In Line 6, the number of Huffman codes is estimated using the
decoding workload model in [1].
In Line 7, the distortion D(i,0) is calculated as Eq 5, 6 and 8.
In Line 8, the distortion D(i,j) is calculated as Eq 9.

In the proposed scheme we have many parameters such as Whuff(N),
Wtemp, Wprop, Wmse and Wres. They are all obtained from the
statistical analysis: Whuff(N) is obtained from the experiment where
we select a 8*8 block from a raw picture, performing the DCT
operation, setting the coefficients after position N as zero and
finally calculating the difference between the original block and
the block after IDCT. For Wtemp, Wprop, Wmse and Wres, we use a set
of video as the training set. We enumerate the four parameters
from 0~10 with a step of 0.1 and select the values with best
estimation result.

1) Select the frames, P’(i,0),i=1…M, from original sequence
based on the frame rate.
2) For all the selected frames:
3) Allocate the workload to the current frame according
to the frame type.
4) Estimate the sum of the workload of MC, WMC of all
the MBs in the current frame

5) Estimate the sum of the workload of IDCT+VLD,
WVLD_IDCT=W- WMC, where W is the workload of the frame.
6) Estimate the average number of Huffman coefficients
of MB in the frame.
7) Estimate the distortion D(i,0) between P’(i,0) and P(i*
fmax/f).
8) Replace the dropped frame by its previous frame. For all
the replaced frames, P’(i, j),i=1…M, estimate the distortion
D(i,j) between P’(i,j) and P(i* fmax/f+j), j=1.. fmax/f.
9) Calculate Avg(D(i,j)) as the overall distortion of the target
video sequence.

48

4. EVALUATION
4.1 Workload Control Scheme Evaluation
4.2.1 Experimental Setup
For proof of concept of the proposed decoding-workload-aware
video encoding, we employ the MPEG-2 as the video format. We
modify MPEG-2 reference encoder to a decoding-workload-aware
encoder. In our experiments, we select 12 raw video sequences
which are shown in Table 1. Each of them is encoded under 11
workload constraints: 20 MHz, 30 MHz, 40 MHz, 50 MHz, 60
MHz, 80 MHz, 100 MHz, 120 MHz, 150 MHz and 200 MHz. We
use MPEG-2 decoder of TCPMP project [4] as the target decoder.
We use SimpleScalar [5] to simulate the decoding procedure and
record the actual decoding workload, which is then compared with
the workload constraints.

No Video Name Description

1 akiyo Still background and a foreground object with very
low movements.

2 bridgeclose Still background and some small objects with random
movements.

3 bridgefar Almost a still image.

4 coastguard Still background and two foreground objects with
contrary movements.

5 container Still background and two foreground objects with
same movements.

6 foreman Background and foreground have moderate
movements.

7 hall Still background and two objects with moderate
movements.

8 highway Background with very fast movements.

9 mother-daughter Still Background and two objects with very slow
movements.

10 news Still background, an object with fast movements and
two objects with very low movements.

11 silent Still background and an object with moderate
movements

12 walk Both background and two foreground objects are
with very fast movements

Table 1: 12 raw video sequences

4.2.1 Experimental Results
Figure 4 shows the comparison between the constraint and the
actual decoding workload for the sequence ‘akiyo’. We run 10
experiments, where we set the workload constraint as 20, 30, 40,
50, 60, 80, 100, 120, 150 and 200MHz, respectively. The results of
the other sequences also show similar matches. Two curves in the
figures represent the constraint and the actual decoding workload,
respectively. It can be observed that, in most cases, the actual
workload is very close to the constraint. However, when the
constraint is very low (20MHz), the actual decoding workload is
more than the constraint as seen in Figure 4. It is because each
sequence has a minimum decoding workload requirement which
depends on the video content. For example, when the motion of the
video is large, the residual error in P- and B-frame is large as well,
which demands more decoding workload. Thus the minimum
decoding workload requirement will be large, and vice visa. The
average difference between the constraint and actual decoding
workload is less than 1.8 %. This indicates that the workload
control scheme controls the decoding workload very well.

!"#$%

&

'&

(&&

('&

)&&

)'&

() * + ' , - . / (&

012345%65783594:3;#<317=

>
%;
"
?
%
@2
5
A
B8
C
D

E%1=7;@#17

!F7G@?5H%;"?%@2

Figure 4: The comparison between the constraint and actual
decoding workload for sequence ‘akiyo’.

Hall

0

20

40

60

80

100

120

140

20 30 40 50 60 80 100 120 150 200

Workload Constraint (Mhz)

M
SE

f ix_f ix

his_f ix

his_mse

Figure 5: The comparison between the video distortions between

different workload control schemes for the sequence ‘hall.

Next, we evaluate the strategies we employed in the workload
control scheme. In Figure 5 we compare the video quality of the
bitstream generated by our scheme with the bitstreams generated
without employing the strategies for the video sequence ‘hall’. The
x-axis represents the workload constraint and the y-axis represents
the MSE of the encoded video bitstream. The results of the other
video sequences show similar patterns. In Figure 5, the curve
his_mse represents MSE value of the bitstream generated by the
scheme using both strategies described earlier. The curve his_fix
represents the MSE value of the bitstream generated by the scheme
only using the strategy in frame level; in the MB level, we allocate
workload according to a fixed ratio. And the curve fix_fix
represents the MSE value of the bitstream generated without using
any strategy, i.e., we allocate workload based on fixed ratios in
both frame and MB level. It is observed that, under the same
constraint, the bitstream generated by using both strategies has
better quality than the bitstream generated by using only one
strategy on the frame level, which is still better than the bitstream
generated without using any strategy. Our experimental results
show that both workload allocation strategies in the frame and MB
levels are effective.

4.2 Frame Rate Selection Scheme Evaluation
4.2.1 Experimental Setup
In the experiment, given a raw video sequence and the workload
constraint, we select the best frame rate from the candidates using
the frame rate selection scheme. To evaluate the result, we encode

49

and decode the sequence under the same workload constraint for
all the frame rate candidates. Then, the dropped frames are
replaced with the previous un-dropped frames and the average
MSE is calculated. We evaluate if the frame rate selected by our
scheme has the smallest MSE. In the experiment, we use 12
different video sequences and 14 workload constraints: 10, 20, 30,
40, 50, 60, 80, 100, 120, 150, 180, 200, 250 and 300 MHz; and
frame rate candidates are 5, 10, 15, 20 and 25 fps.

I;#2J3E?%=3

&

'

(&

('

)&

)'

*&

(&)& *& +& '& ,& .& (&& ()& ('& (.&)&&)'& *&&

>%;"?%@25E%1=7;@#175AB8CD

I3
=7
5K
;@
<3
5
L@
73
5A
6:
=D

MG;5NF83<3

BN9

Figure 6: The comparison between our scheme and MSE for the

sequence ‘bridgeclose’

4.2.2 Experiment Results
Figure 6 shows the comparison between our scheme and MSE for
the sequence ‘bridgeclose’. The results for the other sequences
show similar patterns. It is observed that our scheme and MSE
match well in most cases. The percentage that the frame rate
selected by our scheme has the smallest MSE value is 74.4%. The
percentage that the frame rate selected by our scheme has the
smallest or second smallest MSE value is 90.4%. Furthermore, the
cases our scheme does not match the MSE, are possibly because
MSE does not reflect the video quality accurately. For example in
Figure 6, when the workload constraint is 100 and 120 MHz, MSE
selects the best frame as 25fps. However, when the workload
constraint increases to 150, MSE selects the best frame as 15fps
which is counter-intuitive. The best frame rate should not decrease
with the increase of workload constraint. The case shown in Figure
6 illustrates that our scheme is more reliable than the conventional
MSE.

&

)&

+&

,&

.&

(&&

()&

(+&

(,&

(.&

)&&

() * + ' , - .

O5%65K;@<35L@735E@12#2@73=

9
4
3
F
G7
3
5
P#
<
3
5
A=
3
F
%1
2
D

BN9

MG;5NF83<3

Figure 7: The complexity comparison between the two schemes

In comparison with the conventional approach, such as MSE, our
scheme has a much lower computational complexity. If we use the

conventional approach, we have to encode, decode and calculate
MSE for n times, where n is the number of the frame rate
candidates; while in our scheme, we run the motion estimation (a
part of the encoding process), calculate MSE and variance only
once. A comparison of time complexity of the two schemes is
shown in Figure 7. The test was run on a desktop with Pentium 4
CPU and 1G RAM running Windows XP. As shown in Figure 7,
the execution time increases with the number of frame rate
candidates for the conventional approach, while the execution time
for the proposed scheme is almost constant. When the number of
frame rate candidates is 8, our scheme is about 25 times faster than
the conventional approach.

5. CONCLUSION
In this paper, we have presented a new decoding-workload-aware
video encoding scheme with two main contributions: a decoding
workload control scheme and a fast frame rate selection scheme.
The workload control scheme can control the decoding workload
accurately when the generated video bitstream using the proposed
scheme is decoded in a target client. The fast frame rate selection
scheme can select out the most suitable target frame rate, balancing
the spatial and temporal distortions, before the actual encoding.

We believe that the proposed fast frame rate selection scheme is
not only useful for workload control but also for rate control. On
the other hand, our workload control scheme still has a lot of room
for improvement. For example, the workload allocation in the task
level is an important and interesting problem to study in the future.

Another exciting future work lies on the relationship between the
decoding workload and processor energy consumption. We can use
the same principle presented in this paper to control the energy
consumption level of the video decoding devices via dynamic
voltage/frequency scaling for the purpose of extending battery life
or simply matching the current battery level.

6. REFERENCES
[1] Y. Huang, V. Tran, Y. Wang, "A Workload Predication

Model for Decoding MPEG Video and its Application to
Workload-scalable Transcoding", ACM Multimedia
Conference, pp. 952-961, September, 2007.

[2] M. Bonuccelli, F. Lonetti, F. Martelli, “Temporal
Transcoding for Mobile Video Communication”, the second
Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, pp. 18- 29, March, 2005.

[3] K. Ngan, T. Meier, Z. Cheng, “Improved Single-video Object
Rate Control for MPEG-4”, Circuits and Systems for Video
Technology, IEEE Transactions on, pp. 385-393, May, 2003.

[4] http://tcpmp.corecodec.org.
[5] T. Austin, E. Larson, D. Ernst, “Simplescalar:An

infrastructure for computer system modeling”, IEEE
Computer, pp. 59-67, 2002.

50

