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ABSTRACT 
This paper presents a novel decoding-workload-aware video 
encoding scheme. It takes raw video data and decoding workload 
constraint of a mobile client as input and generates a video 
bitstream which matches such a constraint while striving to 
achieve the best video quality. For a given constraint, the best 
overall video quality of the encoded bitstream is selected with a 
tradeoff between spatial and temporal distortions. The main 
contributions of this paper include: 1) the proposal of an efficient 
scheme which selects the most suitable target frame rate before the 
actual encoding; 2) The design of a workload control (analogous to 
the rate control) scheme which ensures an accurate control of the 
decoding workload when the bitstream is generated using the 
proposed encoding scheme. Experimental results demonstrate the 
feasibility and performance of the proposed scheme. 

 

Categories and Subject Descriptors 
I.6.3 [Simulation and Modeling]: Applications 

H.5.1 [Multimedia Information Systems]: Video 

 

General Terms 
Algorithms, Design, Experimentation 

Keywords 
Video Encoding, Workload Control, Frame Rate Selection 
 

1. INTRODUCTION 
The recent developments in communication and microprocessor 
technologies have made mobile devices becoming attractive 
entertainment platforms for multimedia especially video 
applications. However, supporting video applications on mobile 
devices is challenging due to limited processing power on the low 
to middle-end mobile devices with processor frequency of 200-400 
MHz. Even with the fastest mobile processor in the market today 
with processor frequency of around 600 MHz, it is still difficult to 

satisfy the decoding workload requirement of high quality video 
with a high frame rate. 
 

To address this problem, we propose a decoding-workload-aware 
video encoding scheme to generate a video bitstream which 
matches the workload constraint of the target mobile devices. 
 

The analysis in our previous work on decoding workload model [1] 
shows the relationship between parameters in the video bitstream 
and decoding workload. Given the parameters such as the number 
of Huffman codes, Macroblock (MB) type and motion vectors’ 
precision, the decoding workload can be estimated accurately 
using the proposed decoding workload model. This inspires us to 
design a decoding-workload-aware video encoding scheme, which 
controls the decoding workload from the encoder side by adjusting 
these parameters during the encoding process. The concept of 
workload control is analogous to the rate control which controls 
the target bitrate to satisfy the bandwidth/storage constraint. The 
proposed workload control scheme is implemented with an 
MPEG-2 video codec for the proof of concept. 
 

For video encoding, the frame rate plays a significant role on the 
decoding workload. Intuitively, a video bitstream with the same 
image quality but a lower frame rate has a lower decoding 
workload. For a conventional video encoder, the target frame rate 
is typically fixed at 25 or 30 fps. However, mobile devices with 
low processing power might not be able to decode a video 
bitstream with such a high frame rate in real time. To reduce the 
decoding workload, we can either reduce the frame rate or reduce 
the quality of the individual frame. The problem is, given a 
decoding workload constraint, there can be more than one 
candidate with different combinations of frame rate and individual 
frame quality. The challenge is how to choose a candidate with the 
best overall quality. Conventional objective video quality measures 
such as MSE and PSNR cannot compare quality between video 
clips with different frame rates. A possible solution proposed in [2, 
3] is to replace the dropped frame by its previous frame in display 
order and calculate average PSNR or MSE of the new video 
sequence as the video quality. The rationale behind such approach 
is that a video player typically maintains the current frame on the 
screen before displaying the next frame. With this method, both 
spatial distortion (image quality) and temporal distortion (frame 
rate) are considered. This approach, however, is problematic for 
our proposed encoding scheme, because it requires encoding, 
decoding and calculating PSNR/MSE for every candidate of all 
possible frame rates. This could become prohibitively expensive 
computationally. To solve this problem, we propose a new frame 
rate selection scheme which provides a fast estimation of the 
resulted distortion for every candidate before the actual encoding. 
This is followed by a workload control scheme which accurately 
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determines the decoding workload of the generated video bitstream 
when being decoded on the targeted clients. The architecture of the 
proposed decoding-workload-aware encoder is shown in Figure 1. 
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Figure 1: The encoder architecture 

The encoding procedure includes two phases. In the first phase, the 
raw video data and client decoding workload constraint together 
with all possible frame rates are fed into the Frame Rate Selection 
Scheme which selects the most suitable frame rate for the actual 
encoding. In the second phase, the encoder uses the selected frame 
rate and client decoding workload constraint to compress the raw 
video into the target video bitstream using the Workload Control 
Scheme. 
 

The rest of the paper is organized as follows: Section 2 introduces 
the workload control scheme. Section 3 presents the frame rate 
selection scheme. Section 4 includes evaluations of the proposed 
schemes and Section 5 concludes this paper. 

2. WORKLOAD CONTROL SCHEME 
According to the decoding workload model proposed in [1]: an 
MPEG video is made up of a sequence of Macroblocks (MBs), and 
modeling the video decoding workload is decomposed to modeling 
three major tasks of decoding one MB: Variable Length Decoding 
(VLD), Inversed Discrete Cosine Transform (IDCT) and Motion 
Compensation (MC). The decoding workload of VLD is modeled 
as a linear function of the number of Huffman codes. The decoding 
workload of IDCT is modeled as a lookup table indexed by the last 
position of Huffman codes. The workload of MC is modeled as a 
lookup table indexed by motion vectors’ precisions. And for 
different types of MB, the parameters of the models can be 
different. Thus, we can control the decoding workload by adjusting 
the number of Huffman codes, MB type and motion vector 
precision.  
 

The workload control can work at three levels: frame level, MB 
level or task level. For an encoder, workload control in frame and 
MB level is similar to the conventional bit rate control. However, 
in task level, rate control and workload control are significantly 
different. Rate control scheme only considers the quantization 
level of DCT coefficients, which is proportional to the bit rate. 
Workload control needs to consider multiple factors and their 
tradeoff. For example, if we allocate more workload to the VLD or 
IDCT task, we can have more Huffman codes. This increases the 
video quality. However, allocating more workload to the VLD or 
IDCT task will result in allocating less workload to the MC task. 
This may limit the motion vectors’ precision and thus decreasing 
the video quality. This problem becomes even harder if we also 
consider the MB type. In this section, as the first step of our 
research on the decoding-workload-aware encoder, we do not 
consider the task level workload control: we simply fix the 
workload of the MC task by fixing the MB type and motion 

vectors from the conventional motion estimation procedure. We 
only control the decoding workload of IDCT and VLD tasks by 
adjusting the number of Huffman codes.  
 

We design two strategies for the frame level and MB level 
workload control, respectively. The strategies allocate the 
workload so that the encoded bitstream can have a better video 
quality within the constraint of decoding workload. The two 
strategies can be summarized as follows: 
! In frame level, the workload is allocated based on statistical 

ratio of different frame types and the ratio is adjusted 
according to the recent history. 

! In MB level, the workload is allocated based on the image 
complexity which can be estimated by the variance or MSE.  

 

The experiment results in Section 4 show that these two strategies 
can improve the video quality. Algorithm 1 describes how the 
workload control scheme works. 

 
Algorithm 1: Workload Control Scheme 

 
The details are as follows: 
In line 3, the decoding workload for current frame (Wi, Wp and Wb 
for I-frame, P-frame and B-frame) is allocated as: 
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where Xi, Xp and Xb are the decoding workload for the previous I-, 
P- and B-frames; Kp and Kb are the parameters representing the 

1) Allocate the workload for the current GOP according to 
the constraint, GOP size and frame rate on an average basis. 
2) For all the frames in the GOP: 
3) Allocate the workload to the current frame according to 
the frame type and history record. 
4) Run motion estimation for all the MBs of the current 
frame, decide their MB types, record their MSEs (or VAR 
for I-MB) and motion vectors. 
5) Estimate the workload of MC for all the MBs based on 
the results from 4) using the workload model. 
6) For all the MBs in the current frame: 
7) Allocate the workload of current MB by its MSE/VAR 
and MB type. 
8) From the motion vectors get in the line 4, estimate the 
workload of VLD+IDCT for all possible number of 
quantization scales using workload model. Select out the 
number of quantization scale having the workload closest to 
WVLD_IDCT =Wmb-WMC, where Wmb is the workload allocated 
for the MB, and WMC is the workload of MC get in line 5. 
9) Encode the MB. 
10) Update the status. 
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ratio between I-, P- and B-frame. In our implementation, Kp=1.0 
and Kb=2.0, which are obtained empirically. W is the remaining 
workload of the GOP, which is updated after encoding a frame. Np, 
Nb are the number of P-and B-frames in a GOP. At the beginning, 
Xi, Xp and Xb are initialized as 
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In line 4, we use conventional motion estimation, with which the 
MB type is decided by comparing the MSE or VAR of the MB 
with a constant threshold. 
In line 7, workload of the current MB, Wmb(i) is allocated as 
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where Wframe is the remaining workload of the current frame; 
MSE(i) is the MSE of the ith MB (or VAR(i), if the ith MB is an 
I-MB); N is the number of MBs of the frame. WMC(i) is the 
workload of MC of the ith MB. The rationales behind this equation 
are: 1) as mentioned earlier, we do not change motion vectors’ 
precision or MB type after motion estimation, the workload of MC 
can be regarded as fixed; 2) we allocate more workload to VLD 
and IDCT tasks of the MB which has larger MSE/VAR. A MB 
with larger MSE/VAR implies more residual error. Therefore, it 
requires more Huffman codes for the encoding. And to decode a 
MB with more Huffman codes, more decoding workload is 
required in VLD and IDCT tasks. 
In line 9, we use the quantization scale obtained from line 8 for the 
actual encoding (generating the bitstream). If the encoder also 
employs a rate control scheme, we will get another quantization 
scale for the rate control. In this case, both the decoding workload 
constraint and bit rate constraint can be satisfied by selecting the 
larger quantization scale. 
In line 10, we estimate the decoding workload using the 
parameters extracted from the encoded MB and update status of 
the scheme. 
 

To summarize, in the frame level, we allocate the workload based 
on statistical ratio between different components which is updated 
with a moving average of recent history; in the MB level, we 
allocate the workload based on the image complexity. The 
experiment results in Section 4 show that these two strategies 
improve the video quality considerably. 

3. FRAME RATE SELECTION SCHEME 
This section presents our fast frame rate selection scheme: it 
enumerates all the frame rate candidates; for each candidate, the 
distortion of the target video bitstream is estimated. The candidate 
with the smallest distortion is selected. The problem is how to 
perform a fast distortion estimation of all target video bitstreams 
with all possible frame rates before actual encoding. 

Before going to the detail of the algorithm, we introduce some 
notations first. Assume we have a raw video sequence containing 
N frames:  P(0), P(1), P(2)…P(N-1) (see Figure 2). For each 
frame rate candidate f, we evenly select M=N*f/fmax frames from 
the original sequence for actual encoding, where fmax is the 
maximum frame rate. In our implementation, fmax is set as 25fps. 
We denote P’(0),P’(1),P’(2),…,P’(M-1) are the frames decoded at 
the client end. In Figure 2, f is equal to 12 fps. Replacing a 
dropped frame by its previous frame, we get the frame sequence 
P’(0,0),P’(0,1)..P’(0,fmax/f-1),P’(1,0),P’(1,1)…P’(1,fmax/f-1)…P’(
M-1,0),P’(M-1,1)…P’(M-1, fmax/f-1), where P’(i,j) is exactly the 
same as P’(i,0). And P’(i,j) is corresponding to the frame 
P(i*fmax/f+j) in the original video sequence. 
 

After 
replacement

P’(0,0) P’(0,1) P’(M-1,0)P’(1,0) P’(1,1) P’(2,0) P’(M-1,1)

P’(0) P’(M-1) P’(1) P’(2) 

P(0) P(1) P(N-2) P(2) P(3) P(4) P(N-1) Original

f=12 fps 

… 

… 

… 

 
Figure 2: An example for illustrating frame rate selection scheme 

 
The distortion of the video sequence with frame rate f is calculated 
by the distortion of the video sequence after frame replacement, 
which is then calculated by the average distortion of the 
corresponding frames. Here are the basic ideas to calculate the 
distortion between two corresponding frames: 
 

For the frames P’(i,0) 
According to the frame rate and GOP structure, we know the frame 
type of P’(i,0). Using a simple version of workload control scheme 
in Section 2, we can also estimate the number of Huffman codes in 
this frame. 
 

If P’(i,0 )is an I-frame, 
The variance of the frame describes its image complexity. The 
distortion between P’(i,0) and P(i* fmax/f) is estimated as the image 
complexity lost when being encoded into the target bitstream due 
to workload constraint, i.e., a MB will be coded using just a part of 
the total 64 Huffman codes: 

max
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w N
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where N is the number of Huffman codes, Whuff(N) is the weight of 
the first N Huffman codes, Var(i) is the variance of the original 
frame, which can be calculated before the actual encoding. 
 

If P’(i,0) is a P-frame, 
A P-frame is dependent on its reference frame. Assuming the 
reference frame is P’(k), its distortions have two parts: the 
distortion propagated from its reference frame and the residual 
error lost due to the workload constraint: 

( )
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(64)
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where Wprop is the weight representing the error propagation effect, 
D(k, 0) is the distortion of P’(k) which can be calculated by Eq. 5 
(if P’(k) is an I-frame) or Eq.6 (if P’(k) is a P-frame). Res’(k,i) is 
the residual error between P’(k) and P’(i). The residual error is 
calculated in the motion compensation procedure. Since running 
the motion compensation for all frame rate candidates is 
computationally expensive, we estimate Res’(k,i) by  

Re '( , ) Re ( , ) Re ( , 1) *(Re ( 1, )) ress k i s p q s p p W s p q! ! " " "      (7) 

where p=k* fmax/f, q=i* fmax/f, Wres is a parameter. Thus, we can 
estimate the residual error between any two frames by a linear 
combination of the residual error between two adjacent original 
frames, which needs to be calculated only once before the actual 
encoding. 
 

If P’(i,0) is a B-frame 
It depends on two frames P’(k) and P’(t). Similar to the P-frame, 
its distortion can be calculated as: 

( )( ,0) ( ,0) Re '( , ) Re '( , )( ,0) * *(1 )
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For the frames P’(i,j), where j>0 

MSE 

D(i,0) 
(1-W)*D(i,0)+W*MSE 

P’(i,j) P’(i,0) 

P(i* fmax/f+j) P(i* fmax/f) 

 
Figure 3:The distortion calculation for P’(i,j) 

 
The distortion between P’(i,j) and its corresponding frame P(i* 
fmax/f+j) equals to the distortion between P’(i,0) and P(i*fmax/f+j), 
since P’(i,j) is a direct copy of P’(i,0). Using the frame P(i*fmax/f) 
as a bridge (see Figure 3), the distortion can be estimated as a 
weighted sum of the spatial distortion between P’(i,0) and P(i* fmax 
/f), and the temporal distortion between P(i* fmax/f+j) and P(i* fmax 
/f).  
 

temp temp max maxD(i,j) = (1-W )*D(i,0)+W *MSE(i*f /f, i*f /f+j)     (9) 
 

where Wtemp is the weight of the temporal distortion and 
MSE(i*fmax/f, i*fmax/f+j) is the MSE between P’(i*fmax/f) and 
P(i*fmax/f+j), which is used to represent the temporal distortion 
caused by the frame replacement in the display sequence. Again, 
we do not want to calculate MSE for all the possible candidates. 
Let p=i*fmax/f and q=i*fmax/f+j, we estimate MSE(p,q) by 
 

( , ) ( , 1) * ( 1, )mseMSE p q MSE p p W MSE p q! " " "             (10) 
 

Thus, we estimate the MSE between any two frames by a linear 
combination of the MSE between two adjacent original frames, 
which needs to be calculated only once before the actual encoding. 

The detail of the distortion estimation for each frame rate candidate 
is shown as Algorithm 2. 
 

 
Algorithm 2: Frame Rate Selection Scheme 

 
The details are as follows: 
In Line 3, frames with different type are allocated using different 
ratio. We keep the ratio the same as that in Algorithm 1: 2:2:1 for 
I-, P- and B-frame. 
In Line 4, we assume all MBs in I-frame are I-MBs and 1/3 MBs 
in P-frame are I-MBs and another 2/3 MBs are P-MBs. We also 
assume 1/2 MBs in B-frame are P-MB and another 1/2 MBs are 
B-MBs. Based on this ratio, we estimate the sum of the workload 
of MC of the MBs in the current frame. It should be noted that 
above approach is not the most accurate one. A more accurate 
approach can employ the residual error to estimate the number of 
I-, P- and B-MBs of the frame. However, our simple scheme is 
designed to select the best frame rate. Experimental results show 
that this simple approach works sufficiently well. For I-, P- and 
B-MB, we use a constant value to estimate the MC workload. The 
constant value is obtained from statistical analysis. Again, this is 
not the most accurate approach, but is sufficient for our purpose. 
In Line 6, the number of Huffman codes is estimated using the 
decoding workload model in [1]. 
In Line 7, the distortion D(i,0) is calculated as Eq 5, 6 and 8. 
In Line 8, the distortion D(i,j) is calculated as Eq 9. 
 

In the proposed scheme we have many parameters such as Whuff(N), 
Wtemp, Wprop, Wmse and Wres. They are all obtained from the 
statistical analysis: Whuff(N) is obtained from the experiment where 
we select a 8*8 block from a raw picture, performing the DCT 
operation, setting the coefficients after position N as zero and 
finally calculating the difference between the original block and 
the block after IDCT. For Wtemp, Wprop, Wmse and Wres, we use a set 
of video as the training set. We enumerate the four parameters 
from 0~10 with a step of 0.1 and select the values with best 
estimation result. 

1) Select the frames, P’(i,0),i=1…M, from original sequence 
based on the frame rate. 
2) For all the selected frames: 
3)  Allocate the workload to the current frame according 
to the frame type. 
4)  Estimate the sum of the workload of MC, WMC of all 
the MBs in the current frame 

5)  Estimate the sum of the workload of IDCT+VLD, 
WVLD_IDCT=W- WMC, where W is the workload of the frame. 
6)  Estimate the average number of Huffman coefficients 
of MB in the frame. 
7)  Estimate the distortion D(i,0) between P’(i,0) and P(i* 
fmax/f). 
8) Replace the dropped frame by its previous frame. For all 
the replaced frames, P’(i, j),i=1…M,  estimate the distortion 
D(i,j) between P’(i,j) and P(i* fmax/f+j), j=1.. fmax/f.  
9) Calculate Avg(D(i,j)) as the overall distortion of the target 
video sequence. 
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4. EVALUATION 
4.1 Workload Control Scheme Evaluation 
4.2.1 Experimental Setup 
For proof of concept of the proposed decoding-workload-aware 
video encoding, we employ the MPEG-2 as the video format. We 
modify MPEG-2 reference encoder to a decoding-workload-aware 
encoder. In our experiments, we select 12 raw video sequences 
which are shown in Table 1. Each of them is encoded under 11 
workload constraints: 20 MHz, 30 MHz, 40 MHz, 50 MHz, 60 
MHz, 80 MHz, 100 MHz, 120 MHz, 150 MHz and 200 MHz. We 
use MPEG-2 decoder of TCPMP project [4] as the target decoder. 
We use SimpleScalar [5] to simulate the decoding procedure and 
record the actual decoding workload, which is then compared with 
the workload constraints. 
 
No Video Name Description 

1 akiyo Still background and a foreground object with very 
low movements. 

2 bridgeclose Still background and some small objects with random 
movements. 

3 bridgefar Almost a still image. 

4 coastguard Still background and two foreground objects with 
contrary movements. 

5 container Still background and two foreground objects with 
same movements. 

6 foreman Background and foreground have moderate 
movements. 

7 hall Still background and two objects with moderate 
movements. 

8 highway Background with very fast movements. 

9 mother-daughter Still Background and two objects with very slow 
movements. 

10 news Still background, an object with fast movements and 
two objects with very low movements. 

11 silent Still background and an object with moderate 
movements 

12 walk Both background and two foreground objects are 
with very fast movements 

Table 1: 12 raw video sequences 
 

4.2.1 Experimental Results 
Figure 4 shows the comparison between the constraint and the 
actual decoding workload for the sequence ‘akiyo’. We run 10 
experiments, where we set the workload constraint as 20, 30, 40, 
50, 60, 80, 100, 120, 150 and 200MHz, respectively. The results of 
the other sequences also show similar matches. Two curves in the 
figures represent the constraint and the actual decoding workload, 
respectively. It can be observed that, in most cases, the actual 
workload is very close to the constraint. However, when the 
constraint is very low (20MHz), the actual decoding workload is 
more than the constraint as seen in Figure 4. It is because each 
sequence has a minimum decoding workload requirement which 
depends on the video content. For example, when the motion of the 
video is large, the residual error in P- and B-frame is large as well, 
which demands more decoding workload. Thus the minimum 
decoding workload requirement will be large, and vice visa. The 
average difference between the constraint and actual decoding 
workload is less than 1.8 %. This indicates that the workload 
control scheme controls the decoding workload very well. 
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Figure 4: The comparison between the constraint and actual 
decoding workload for sequence ‘akiyo’. 

Hall

0

20

40

60

80

100

120

140

20 30 40 50 60 80 100 120 150 200

Workload Constraint (Mhz)

M
SE

f ix_f ix

his_f ix

his_mse

 
Figure 5: The comparison between the video distortions between 

different workload control schemes for the sequence ‘hall. 
 
Next, we evaluate the strategies we employed in the workload 
control scheme. In Figure 5 we compare the video quality of the 
bitstream generated by our scheme with the bitstreams generated 
without employing the strategies for the video sequence ‘hall’. The 
x-axis represents the workload constraint and the y-axis represents 
the MSE of the encoded video bitstream. The results of the other 
video sequences show similar patterns. In Figure 5, the curve 
his_mse represents MSE value of the bitstream generated by the 
scheme using both strategies described earlier. The curve his_fix 
represents the MSE value of the bitstream generated by the scheme 
only using the strategy in frame level; in the MB level, we allocate 
workload according to a fixed ratio. And the curve fix_fix 
represents the MSE value of the bitstream generated without using 
any strategy, i.e., we allocate workload based on fixed ratios in 
both frame and MB level. It is observed that, under the same 
constraint, the bitstream generated by using both strategies has 
better quality than the bitstream generated by using only one 
strategy on the frame level, which is still better than the bitstream 
generated without using any strategy. Our experimental results 
show that both workload allocation strategies in the frame and MB 
levels are effective. 

4.2 Frame Rate Selection Scheme Evaluation 
4.2.1 Experimental Setup 
In the experiment, given a raw video sequence and the workload 
constraint, we select the best frame rate from the candidates using 
the frame rate selection scheme. To evaluate the result, we encode 
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and decode the sequence under the same workload constraint for 
all the frame rate candidates. Then, the dropped frames are 
replaced with the previous un-dropped frames and the average 
MSE is calculated. We evaluate if the frame rate selected by our 
scheme has the smallest MSE. In the experiment, we use 12 
different video sequences and 14 workload constraints: 10, 20, 30, 
40, 50, 60, 80, 100, 120, 150, 180, 200, 250 and 300 MHz; and 
frame rate candidates are 5, 10, 15, 20 and 25 fps. 
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Figure 6: The comparison between our scheme and MSE for the 

sequence ‘bridgeclose’ 
 

4.2.2 Experiment Results 
Figure 6 shows the comparison between our scheme and MSE for 
the sequence ‘bridgeclose’. The results for the other sequences 
show similar patterns. It is observed that our scheme and MSE 
match well in most cases. The percentage that the frame rate 
selected by our scheme has the smallest MSE value is 74.4%. The 
percentage that the frame rate selected by our scheme has the 
smallest or second smallest MSE value is 90.4%. Furthermore, the 
cases our scheme does not match the MSE, are possibly because 
MSE does not reflect the video quality accurately. For example in 
Figure 6, when the workload constraint is 100 and 120 MHz, MSE 
selects the best frame as 25fps. However, when the workload 
constraint increases to 150, MSE selects the best frame as 15fps 
which is counter-intuitive. The best frame rate should not decrease 
with the increase of workload constraint. The case shown in Figure 
6 illustrates that our scheme is more reliable than the conventional 
MSE. 
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Figure 7: The complexity comparison between the two schemes 

 
In comparison with the conventional approach, such as MSE, our 
scheme has a much lower computational complexity. If we use the 

conventional approach, we have to encode, decode and calculate 
MSE for n times, where n is the number of the frame rate 
candidates; while in our scheme, we run the motion estimation (a 
part of the encoding process), calculate MSE and variance only 
once. A comparison of time complexity of the two schemes is 
shown in Figure 7. The test was run on a desktop with Pentium 4 
CPU and 1G RAM running Windows XP. As shown in Figure 7, 
the execution time increases with the number of frame rate 
candidates for the conventional approach, while the execution time 
for the proposed scheme is almost constant. When the number of 
frame rate candidates is 8, our scheme is about 25 times faster than 
the conventional approach. 

5. CONCLUSION  
In this paper, we have presented a new decoding-workload-aware 
video encoding scheme with two main contributions: a decoding 
workload control scheme and a fast frame rate selection scheme. 
The workload control scheme can control the decoding workload 
accurately when the generated video bitstream using the proposed 
scheme is decoded in a target client. The fast frame rate selection 
scheme can select out the most suitable target frame rate, balancing 
the spatial and temporal distortions, before the actual encoding. 
 
We believe that the proposed fast frame rate selection scheme is 
not only useful for workload control but also for rate control. On 
the other hand, our workload control scheme still has a lot of room 
for improvement. For example, the workload allocation in the task 
level is an important and interesting problem to study in the future. 
 
Another exciting future work lies on the relationship between the 
decoding workload and processor energy consumption. We can use 
the same principle presented in this paper to control the energy 
consumption level of the video decoding devices via dynamic 
voltage/frequency scaling for the purpose of extending battery life 
or simply matching the current battery level. 
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