
ENHANCING COLLABORATIVE FILTERING MUSIC
RECOMMENDATION BY BALANCING EXPLORATION AND

EXPLOITATION

Zhe Xing, Xinxi Wang, Ye Wang
School of Computing, National University of Singapore

{xing-zhe,wangxinxi,wangye}@comp.nus.edu.sg

ABSTRACT

Collaborative filtering (CF) techniques have shown great
success in music recommendation applications. However,
traditional collaborative-filtering music recommendation al-
gorithms work in a greedy way, invariably recommend-
ing songs with the highest predicted user ratings. Such a
purely exploitative strategy may result in suboptimal per-
formance over the long term. Using a novel reinforcement
learning approach, we introduce exploration into CF and
try to balance between exploration and exploitation. In
order to learn users’ musical tastes, we use a Bayesian
graphical model that takes account of both CF latent fac-
tors and recommendation novelty. Moreover, we designed
a Bayesian inference algorithm to efficiently estimate the
posterior rating distributions. In music recommendation,
this is the first attempt to remedy the greedy nature of CF
approaches. Results from both simulation experiments and
user study show that our proposed approach significantly
improves recommendation performance.

1. INTRODUCTION

In the field of music recommendation, content-based ap-
proaches and collaborative filtering (CF) approaches have
been the prevailing recommendation strategies. Content-
based algorithms [1, 9] analyze acoustic features of the
songs that the user has rated highly in the past and recom-
mend only songs that have high degrees of acoustic simi-
larity. On the other hand, collaborative filtering (CF) algo-
rithms [7, 13] assume that people tend to get good recom-
mendations from someone with similar preferences, and
the user’s ratings are predicted according to his neighbors’
ratings. These two traditional recommendation approaches,
however, share a weakness.

Working in a greedy way, they always generate “safe”
recommendations by selecting songs with the highest pre-
dicted user ratings. Such a purely exploitative strategy may
result in suboptimal performance over the long term due to
the lack of exploration. The reason is that user preference

c© Zhe Xing, Xinxi Wang, Ye Wang.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Zhe Xing, Xinxi Wang, Ye Wang.
“Enhancing collaborative filtering music recommendation by balancing
exploration and exploitation”, 15th International Society for Music Infor-
mation Retrieval Conference, 2014.

is only estimated based on the current knowledge avail-
able in the recommender system. As a result, uncertainty
always exists in the predicted user ratings and may give
rise to a situation where some of the non-greedy options
deemed almost as good as the greedy ones are actually bet-
ter than them. Without exploration, however, we will never
know which ones are better. With the appropriate amount
of exploration, the recommender system could gain more
knowledge about the user’s true preferences before exploit-
ing them.

Our previous work [12] tried to mitigate the greedy prob-
lem in content-based music recommendation, but no work
has addressed this problem in the CF context. We thus
aim to develop a CF-based music recommendation algo-
rithm that can strike a balance between exploration and ex-
ploitation and enhance long-term recommendation perfor-
mance. To do so, we introduce exploration into collabo-
rative filtering by formulating the music recommendation
problem as a reinforcement learning task called n-armed
bandit problem. A Bayesian graphical model taking ac-
count of both collaborative filtering latent factors and rec-
ommendation novelty is proposed to learn the user pref-
erences. The lack of efficiency becomes a major chal-
lenge, however, when we adopt an off-the-shelf Markov
Chain Monte Carlo (MCMC) sampling algorithm for the
Bayesian posterior estimation. We are thus prompted to
design a much faster sampling algorithm for Bayesian in-
ference. We carried out both simulation experiments and a
user study to show the efficiency and effectiveness of the
proposed approach. Contributions of this paper are sum-
marized as follows:
• To the best of our knowledge, this is the first work in

music recommendation to temper CF’s greedy nature by
investigating the exploration-exploitation trade-off using a
reinforcement learning approach.
• Compared to an off-the-shelf MCMC algorithm, a

much more efficient sampling algorithm is proposed to speed
up Bayesian posterior estimation.
• Experimental results show that our proposed approach

enhances the performance of CF-based music recommen-
dation significantly.

2. RELATED WORK

Based on the assumption that people tend to receive good
recommendations from others with similar preferences, col-

laborative filtering (CF) techniques come in two categories:
memory-based CF and model-based CF. Memory-based
CF algorithms [3, 8] first search for neighbors who have
similar rating histories to the target user. Then the target
user’s ratings can be predicted according to his neighbors’
ratings. Model-based CF algorithms [7, 14] use various
models and machine learning techniques to discover latent
factors that account for the observed ratings.

Our previous work [12] proposed a reinforcement learn-
ing approach to balance exploration and exploitation in
music recommendation. However, this work is based on
a content-based approach. One major drawback of the per-
sonalized user rating model is that low-level audio features
are used to represent the content of songs. This purely
content-based approach is not satisfactory due to the se-
mantic gap between low-level audio features and high-level
user preferences. Moreover, it is difficult to determine
which underlying acoustic features are effective in mu-
sic recommendation scenarios, as these features were not
originally designed for music recommendation. Another
shortcoming is that songs recommended by content-based
methods often lack variety, because they are all acousti-
cally similar to each other. Ideally, users should be pro-
vided with a range of genres rather than a homogeneous
set.

While no work has attempted to address the greedy prob-
lem of CF approaches in the music recommendation con-
text, Karimi et al. tried to investigate it in other recommen-
dation applications [4, 5]. However, their active learning
approach merely explores items to optimize the prediction
accuracy on a pre-determined test set [4]. No attention is
paid to the exploration-exploitation trade-off problem. In
their other work, the recommendation process is split into
two steps [5]. In the exploration step, they select an item
that brings maximum change to the user parameters, and
then in the exploitation step, they pick the item based on
the current parameters. The work takes balancing explo-
ration and exploitation into consideration, but only in an
ad hoc way. In addition, their approach is evaluated us-
ing only an offline and pre-determined dataset. In the end,
their algorithm is not practical for deployment in online
recommender systems due to its low efficiency.

3. PROPOSED APPROACH

We first present a simple matrix factorization model for
collaborative filtering (CF) music recommendation. Then,
we point out major limitations of this traditional CF algo-
rithm and describe our proposed approach in detail.

3.1 Matrix Factorization for Collaborative Filtering

Suppose we havem users and n songs in the music recom-
mender system. Let R = {rij}m×n denote the user-song
rating matrix, where each element rij represents the rating
of song j given by user i.

Matrix factorization characterizes users and songs by
vectors of latent factors. Every user is associated with a
user feature vector ui ∈ Rf , i = 1, 2, ...,m, and every

song a song feature vector vj ∈ Rf , j = 1, 2, ..., n. For
a given song j, vj measures the extent to which the song
contains the latent factors. For a given user i, ui measures
the extent to which he likes these latent factors. The user
rating can thus be approximated by the inner product of the
two vectors:

r̂ij = uTi vj (1)

To learn the latent feature vectors, the system minimizes
the following regularized squared error on the training set:

∑
(i,j)∈I

(rij−uTi vj)
2+λ(

m∑
i=1

nui ‖ui‖
2+

n∑
j=1

nvj ‖vj‖
2) (2)

where I is the index set of all known ratings, λ a regular-
ization parameter, nui

the number of ratings by user i, and
nvj the number of ratings of song j. We use the alternating
least squares (ALS) [14] technique to minimize Eq. (2).

However, this traditional CF recommendation approach
has two major drawbacks. (I) It fails to take recommen-
dation novelty into consideration. For a user, the novelty
of a song changes with each listening. (II) It works greed-
ily, always recommending songs with the highest predicted
mean ratings, while a better approach may be to actively
explore a user’s preferences rather than to merely exploit
available rating information [12]. To address these draw-
backs, we propose a reinforcement learning approach to
CF-based music recommendation.

3.2 A Reinforcement Learning Approach

Music recommendation is an interactive process. The sys-
tem repeatedly choose among n different songs to recom-
mend. After each recommendation, it receives a rating
feedback (or reward) chosen from an unknown probability
distribution, and its goal is to maximize user satisfaction,
i.e., the expected total reward, in the long run. Similarly,
reinforcement learning explores an environment and takes
actions to maximize the cumulative reward. It is thus fitting
to treat music recommendation as a well-studied reinforce-
ment learning task called n-armed bandit.

The n-armed bandit problem assumes a slot machine
with n levers. Pulling a lever generates a payoff from the
unknown probability distribution of the lever. The objec-
tive is to maximize the expected total payoff over a given
number of action selections, say, over 1000 plays.

3.2.1 Modeling User Rating

To address drawback (I) in Section 3.1, we assume that
a song’s rating is affected by two factors: CF score, the
extent to which the user likes the song in terms of each CF
latent factor, and novelty score, the dynamically changing
novelty of the song.

From Eq. (1), we define the CF score as:

UCF = θTv (3)

where vector θ indicates the user’s preferences for dif-
ferent CF latent factors and v is the song feature vector

learned by the ALS CF algorithm. For the novelty score,
we adopt the formula used in [12]:

UN = 1− e−t/s (4)

where t is the time elapsed since when the song was last
heard, s the relative strength of the user’s memory, and
e−t/s the well-known forgetting curve. The formula as-
sumes that a song’s novelty decreases immediately when
listened and gradually recovers with time. (For more de-
tails on the novelty definition, please refer to [12].) We
thus model the final user rating by combining these two
scores:

U = UCFUN = (θTv)(1− e−t/s) (5)

Given the variability in musical taste and memory strength,
each user is associated with a pair of parameters Ω =
(θ, s), to be learned from the user’s rating history. More
technical details will be explained in Section 3.2.2.

Since the predicted user ratings always carry uncertainty,
we assume them to be random variables rather than fixed
numbers. Let Rj denote the rating of song j given by the
target user, and Rj follows an unknown probability distri-
bution. We assume that the expectation of Rj is the Uj

defined in Eq. (5). Thus, the expected rating of song j can
be estimated as:

E[Rj] = Uj = (θTvj)(1− e−tj/s) (6)

Traditional recommendation strategy will first obtain the
vj and tj of each song in the system to compute the ex-
pected rating using Eq. (6) and then recommend the song
with the highest expected rating. We call this a greedy rec-
ommendation as the system is exploiting its current knowl-
edge of the user ratings. By selecting one of the non-
greedy recommendations and gathering more user feed-
back, the system explores further and gains more knowl-
edge about the user preferences. A greedy recommenda-
tion may maximize the expected reward in the current it-
eration but would result in suboptimal performance over
the long term. This is because several non-greedy recom-
mendations may be deemed nearly as good but come with
substantial variance (or uncertainty), and it is thus possi-
ble that some of them are actually better than the greedy
recommendation. Without exploration, however, we will
never know which ones they are.

Therefore, to counter the greedy nature of CF (draw-
back II), we introduce exploration into music recommen-
dation to balance exploitation. To do so, we adopt one of
the state-of-the-art algorithms called Bayesian Upper Con-
fidence Bounds (Bayes-UCB) [6]. In Bayes-UCB, the ex-
pected reward Uj is a random variable rather than a fixed
value. Given the target user’s rating history D, the pos-
terior distribution of Uj , denoted as p(Uj |D), needs to be
estimated. Then the song with the highest fixed-level quan-
tile value of p(Uj |D) will be recommended to the target
user.

3.2.2 Bayesian Graphical Model

To estimate the posterior distribution of U , we adopt the
Bayesian model (Figure 1) used in [12]. The correspond-

τ

N

θ s

v R t

𝑎0 𝑑0 𝑒0 𝑏0 𝑐0

Figure 1: Bayesian Graphical Model.

ing probability dependency is defined as follows:

R|v, t,θ, s, σ2 ∼ N (θTv(1− e−t/s), σ2) (7)

θ|σ2 ∼ N (0, a0σ
2I) (8)

s ∼ Gamma(b0, c0) (9)

τ = 1/σ2 ∼ Gamma(d0, e0) (10)

I is the f × f identity matrix. N represents Gaussian
distribution with parameters mean and variance. Gamma
represents Gamma distribution with parameters shape and
rate. θ, s, and τ are parameters. a0, b0, c0, d0, and e0 are
hyperparameters of the priors.

At current iteration h+1, we have gathered h observed
recommendation history Dh = {(vi, ti, ri)}hi=1. Given
that each user in our model is described as Ω = (θ, s),
we have according to the Bayes theorem:

p(Ω | Dh) ∝ p(Ω)p(Dh | Ω) (11)

Then the posterior probability density function (PDF) of
the expected rating Uj of song j can be estimated as:

p(Uj |Dh) =
∫
p(Uj |Ω)p(Ω|Dh)dΩ (12)

Since Eq. (11) has no closed form solution, we are unable
to directly estimate the posterior PDF in Eq. (12). We thus
turn to a Markov Chain Monte Carlo (MCMC) algorithm
to adequately sample the parameters Ω = (θ, s). We then
substitute every parameter sample into Eq. (6) to obtain a
sample of Uj . Finally, the posterior PDF in Eq. (12) can
be approximated by the histogram of the samples of Uj .

After estimating the posterior PDF of each song’s ex-
pected rating, we follow the Bayes-UCB approach [6] to
recommend song j∗ that maximizes the quantile function:

j∗ = arg max
j=1,...,|S|

Q (α, p(Uj |Dh)) (13)

where α = 1− 1
h+1 , |S| is the total number of songs in the

recommender system, and the quantile function Q returns
the value x such that Pr(Uj ≤ x|Dh) = α. The pseudo
code of our algorithm is presented in Algorithm 1.

3.3 Efficient Sampling Algorithm

Bayesian inference is very slow with an off-the-shelf MCMC
sampling algorithm because it takes a long time for the
Markov chain to converge. In response, we previously pro-
posed an approximate Bayesian model using piecewise lin-
ear approximation [12]. However, not only is the original

Algorithm 1 Exploration-Exploitation Balanced Music
Recommendation

for h = 1→ N do
if h == 1 then

Recommend a song randomly;
else

Draw samples of θ and s based on p(Ω | Dh−1);
for song j = 1→ |S| do

Obtain vj and tj of song j and compute samples of
Uj using Eq. (6);
Estimate p(Uj |Dh−1) using histogram of the samples
of Uj ;
Compute quantile qhj = Q

(
1− 1

h
, p(Uj |Dh−1)

)
;

end for
Recommend song j∗ = argmaxj=1,...,|S| q

h
j ;

Collect user rating rh and update p(Ω | Dh);
end if

end for

Bayesian model altered, tuning the numerous (hyper)para-
meters is also tedious. In this paper, we present a bet-
ter way to improve efficiency. Since it is simple to sam-
ple from a conditional distribution, we develop a specific
Gibbs sampling algorithm to hasten convergence.

Given N training samples D = {vi, ti, ri}Ni=1, the con-
ditional distribution p(θ|D, τ, s) is still a Gaussian distri-
bution and can be obtained as follows:

p(θ|D, τ, s) ∝ p(τ)p(θ|τ)p(s)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ p(θ|τ)
N∏
i=1

p(ri|vi, ti,θ, s, τ) ∝ exp
(
−1

2
θT (a0σ

2I)−1θ

)

×exp

(
N∑
i=1

− 1

2σ2

(
ri − θTvi(1− e−ti/s)

)2)

∝ exp
(
−1

2
θTΛθ + ηTθ

)
∝ N (µ,Σ) (14)

where µ and Σ, respectively the mean and covariance of
the multivariate Gaussian distribution, satisfy:

Σ−1 = Λ = τ

(
1

a0
I +

N∑
i=1

(1− e−ti/s)2vivTi

)
(15)

µTΣ−1 = ηT = τ

(
N∑
i=1

ri(1− e−ti/s)vTi

)
(16)

Similarly, the conditional distribution p(τ |D,θ, s) re-
mains a Gamma distribution and can be derived as:

p(τ |D,θ, s) ∝ p(τ)p(θ|τ)p(s)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ p(τ)p(θ|τ)
N∏
i=1

p(ri|vi, ti,θ, s, τ)

∝ τd0−1exp(−e0τ)× exp
(
−1

2
θT (a0σ

2I)−1θ

)
×

(
σ
√
2π
)−N

exp

(
N∑
i=1

− 1

2σ2

(
ri − θTvi(1− e−ti/s)

)2)

∝ τα−1exp(−βτ) ∝ Gamma (α, β) (17)

Users # Songs # Observations % Density
100,000 20,000 20,699,820 1.035%

Table 1: Size of the dataset. Density is the percentage of entries
in the user-song matrix that have observations.

where α and β are respectively the shape and rate of the
Gamma distribution and satisfy:

α = d0 +
f +N

2
(18)

β = e0 +
θTθ

2a0
+

1

2

N∑
i=1

(
ri − θTvi(1− e−ti/s)

)2
(19)

The conditional distribution p(s|D,θ, τ) has no closed
form expression. We thus adopt the Metropolis-Hastings
(MH) algorithm [2] with a proposal distribution q(st+1|st) =
N (st, 1) to draw samples of s. Our detailed Gibbs sam-
pling process is presented in Algorithm 2.

Algorithm 2 Gibbs Sampling for Bayesian Inference
Initialize θ, s, τ ;
for t = 1→MaxIteration do

Sample θ(t+1) ∼ p(θ|D, τ (t), s(t));
Sample τ (t+1) ∼ p(τ |D,θ(t+1), s(t));
stmp = s(t);
for i = 1→ K do # MH Step

Draw y ∼ N (stmp, 1);

α = min
(

p(y|D,θ(t+1),τ(t+1))

p(stmp|D,θ(t+1),τ(t+1))
, 1
)

;

Draw u ∼ Uniform(0, 1);
if u < α then
stmp = y;

end if
end for
s(t+1) = stmp;

end for

4. EVALUATION

4.1 Dataset

The Taste Profile Subset 1 used in the Million Song Dataset
Challenge [10] has over 48 million triplets (user, song,
count) describing the listening history of over 1 million
users and 380,000 songs. We select 20,000 songs with top
listening counts and 100,000 users who have listened to the
most songs. Since this collection of listening history is a
form of implicit feedback data, we use the approach pro-
posed in [11] to perform negative sampling. The detailed
statistics of the final dataset are shown in Table 1.

4.2 Learning CF Latent Factors

First, we determine the optimal value of λ, the regular-
ization parameter, and f , the dimensionality of the latent
feature vectors. We randomly split the dataset into three
disjoint parts: training set (80%), validation set (10%),
and test set (10%). Training set is used to learn the CF
latent factors, and the convergence criteria of the ALS al-
gorithm is achieved when the change in root mean square

1 http://labrosa.ee.columbia.edu/millionsong/tasteprofile

0 100 200 300 400

Training set size

2

4

6

8

A
cc

u
ra

cy
 (

R
o
o
t

M
e
a
n
 S

q
u
a
re

 E
rr

o
r) MCMC

Gibbs

Figure 2: Prediction accuracy of sampling algorithms.

error (RMSE) on the validation set is less than 10−4. Then
we use the learned latent factors to predict the ratings on
the test set. We first fix f = 55 and vary λ from 0.005 to
0.1; minimal RMSE is achieved at λ = 0.025. We then
fix λ = 0.025 and vary f from 10 to 80, and f = 75
yields minimal RMSE. Therefore, we adopt the optimal
value λ = 0.025 and f = 75 to perform the final ALS CF
algorithm and obtain the learned latent feature vector of
each song in our dataset. These vectors will later be used
for reinforcement learning.

4.3 Efficiency Study

To show that our Gibbs sampling algorithm makes Bayesian
inference significantly more efficient, we conduct simula-
tion experiments to compare it with an off-the-shelf MCMC
algorithm developed in JAGS 2 . We implemented the Gibbs
algorithm in C++, which JAGS uses, for a fair comparison.

For each data point di ∈ {(vi, ti, ri)}ni=1 in the simu-
lation experiments, vi is randomly chosen from the latent
feature vectors learned by the ALS CF algorithm. ti is
randomly sampled from uniform(50, 2592000), i.e. be-
tween a time gap of 50 seconds and one month. ri is calcu-
lated using Eq. (6) where elements of θ are sampled from
N (0, 1) and s from uniform(100, 1000).

To determine the burn-in and sample size of the two
algorithms and to ensure they draw samples equally effec-
tively, we first check to see if they converge to a similar
level. We generate a test set of 300 data points and vary
the size of the training set to gauge the prediction accuracy.
We set K = 5 in the MH step of our Gibbs algorithm.
While our Gibbs algorithm achieves reasonable accuracy
with burn-in = 20 and sample size = 100, the MCMC al-
gorithm gives comparable results only when both parame-
ters are 10000. Figure 2 shows their prediction accuracies
averaged over 10 trials. With burn-in and sample size de-
termined, we then conduct an efficiency study of the two
algorithms. We vary the training set size from 1 to 1000
and record the time they take to finish the sampling pro-
cess. We use a computer with Intel Core i7-2600 CPU
@ 3.40Ghz and 8GB RAM. The efficiency comparison re-
sult is shown in Figure 3. We can see that computation
time of both two sampling algorithms grows linearly with
the training set size. However, our proposed Gibbs sam-
pling algorithm is hundreds of times faster than MCMC,

2 http://mcmc-jags.sourceforge.net/

0 200 400 600 800 1000

Training set size

0

10

20

30

40

50

60

T
im

e
 (

se
co

n
d
s)

MCMC

Gibbs

Figure 3: Efficiency comparison of sampling algorithms.
(T imeMCMC = 538.762s and T imeGibbs = 0.579s when
TrainingSetSize = 1000).

Figure 4: Online evaluation platform.

suggesting that our proposed approach is practical for de-
ployment in online recommender systems.

4.4 User Study

In an online user study, we compare the effectiveness of
our proposed recommendation algorithm, Bayes-UCB-CF,
with that of two baseline algorithms: (1) Greedy algo-
rithm, representing the traditional recommendation strat-
egy without exploration-exploitation trade-off. (2) Bayes-
UCB-Content algorithm [12], which also adopts the Bayes-
UCB technique but is content-based instead of CF-based.
We do not perform offline evaluation because it cannot cap-
ture the effect of the elapsed time t in our rating model and
the interactiveness of our approach.

Eighteen undergraduate and graduate students (9 females
and 9 males, age 19 to 29) are invited to participate in the
user study. The subject pool covers a variety of majors
of study and nationalities, including American, Chinese,
Korean, Malaysian, Singaporean and Iranian. Subjects re-
ceive a small payment for their participation. The user
study takes place over the course of two weeks in April
2014 on a user evaluation website we constructed (Figure
4). The three algorithms evaluated are randomly assigned
to numbers 1-3 to avoid bias. For each algorithm, 200 rec-
ommendations are evaluated using a rating scale from 1 to
5. Subjects are reminded to take breaks frequently to avoid
fatigue. To minimize the carryover effect, subjects can-
not evaluate two different algorithms in one day. For the
user study, Bayes-UCB-CF’s hyperparameters are set as:
a0 = 10, b0 = 3, c0 = 0.01, d0 = 0.001 and e0 = 0.001.

Since maximizing the total expected rating is the main
objective of a music recommender system, we thus com-
pare the cumulative average rating of the three algorithms.
Figure 5 shows the average rating and standard error of

0 50 100 150 200
recommendation iterations

2.2

2.4

2.6

2.8

3.0

3.2

3.4
cu

m
u
la

ti
v
e
 a

v
e
ra

g
e
 r

a
ti

n
g

Greedy

Bayes-UCB-Content

Bayes-UCB-CF

Figure 5: Recommendation performance comparison.

each algorithm from the beginning till the n-th recommen-
dation iteration. We can see that our proposed Bayes-UCB-
CF algorithm significantly outperforms Bayes-UCB-Content,
suggesting that the latter still fails to bridge the semantic
gap between high-level user preferences and low-level au-
dio features.

T-tests show that Bayes-UCB-CF starts to significantly
outperform the Greedy baseline after the 46th iteration (p-
value < 0.0472). In fact, Greedy’s performance decays
rapidly after the 60th iteration while others continue to
improve. Because Greedy solely exploits, it is quickly
trapped at a local optima, repeatedly recommending the
few songs with initial good ratings. As a result, the novelty
of those songs plummets, and users become bored. Greedy
will introduce new songs after collecting many low ratings,
only to be soon trapped into a new local optima. By con-
trast, our Bayes-UCB-CF algorithm balances exploration
and exploitation and thus significantly improves the rec-
ommendation performance.

5. CONCLUSION

We present a novel reinforcement learning approach to mu-
sic recommendation that remedies the greedy nature of the
collaborative filtering approaches by balancing exploita-
tion with exploration. A Bayesian graphical model incor-
porating both the CF latent factors and novelty is used to
learn user preferences. We also develop an efficient sam-
pling algorithm to speed up Bayesian inference. In mu-
sic recommendation, our work is the first attempt to in-
vestigate the exploration-exploitation trade-off and to ad-
dress the greedy problem in CF-based approaches. Results
from simulation experiments and user study have shown
that our proposed algorithm significantly improves recom-
mendation performance over the long term. To further im-
prove recommendation performance, we plan to deploy a
hybrid model that combines content-based and CF-based
approaches in the proposed framework.

6. ACKNOWLEDGEMENT
We thank the subjects in our user study for their participation.
We are also grateful to Haotian “Sam” Fang for proofreading

the manuscript. This project is funded by the National Research
Foundation (NRF) and managed through the multi-agency In-
teractive & Digital Media Programme Office (IDMPO) hosted
by the Media Development Authority of Singapore (MDA) un-
der Centre of Social Media Innovations for Communities (COS-
MIC).

7. REFERENCES

[1] P. Cano, M. Koppenberger, and N. Wack. Content-based mu-
sic audio recommendation. In Proceedings of the 13th annual
ACM international conference on Multimedia, pages 211–
212. ACM, 2005.

[2] S. Chib and E. Greenberg. Understanding the metropolis-
hastings algorithm. The American Statistician, 49(4):327–
335, 1995.

[3] J. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filtering.
In Proceedings of the 22nd annual ACM international con-
ference on SIGIR, pages 230–237. ACM, 1999.

[4] R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-
Thieme. Active learning for aspect model in recommender
systems. In Symposium on Computational Intelligence and
Data Mining, pages 162–167. IEEE, 2011.

[5] R. Karimi, C. Freudenthaler, A. Nanopoulos, and L. Schmidt-
Thieme. Non-myopic active learning for recommender sys-
tems based on matrix factorization. In International Confer-
ence on Information Reuse and Integration, pages 299–303.
IEEE, 2011.

[6] E. Kaufmann, O. Cappé, and A. Garivier. On bayesian upper
confidence bounds for bandit problems. In International Con-
ference on Artificial Intelligence and Statistics, pages 592–
600, 2012.

[7] N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music recom-
mendations: modeling music ratings with temporal dynamics
and item taxonomy. In Proceedings of the fifth ACM confer-
ence on Recommender systems, pages 165–172. ACM, 2011.

[8] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,
L. R. Gordon, and J. Riedl. Grouplens: applying collabora-
tive filtering to usenet news. Communications of the ACM,
40(3):77–87, 1997.

[9] B. Logan. Music recommendation from song sets. In ISMIR,
2004.

[10] B. McFee, T. Bertin-Mahieux, D. P.W. Ellis, and G. R.G.
Lanckriet. The million song dataset challenge. In Proceed-
ings of international conference companion on World Wide
Web, pages 909–916. ACM, 2012.

[11] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz,
and Q. Yang. One-class collaborative filtering. In Eighth
IEEE International Conference on Data Mining, pages 502–
511. IEEE, 2008.

[12] X. Wang, Y. Wang, D. Hsu, and Y. Wang. Exploration in in-
teractive personalized music recommendation: A reinforce-
ment learning approach. arXiv preprint arXiv:1311.6355,
2013.

[13] K. Yoshii and M. Goto. Continuous plsi and smoothing tech-
niques for hybrid music recommendation. In ISMIR, pages
339–344, 2009.

[14] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale
parallel collaborative filtering for the netflix prize. In Algo-
rithmic Aspects in Information and Management, pages 337–
348. Springer, 2008.

